Varroa außer Kontrolle - was Pestizide damit zu tun haben

Benutzeravatar
zaunreiter
Administrator
Beiträge: 4818
Registriert: Do 5. Aug 2010, 19:14
Wohnort: Niederrhein
Kontaktdaten:

Re: Varroa außer Kontrolle - was Pestizide damit zu tun haben

Beitragvon zaunreiter » Di 24. Mär 2020, 17:08

Ein Überblick über die Exposition und Auswirkungen subletaler Neonicotinoid-Insektizide auf Bestäuber

Abstrakt
Zweck der Überprüfung
Imker auf der ganzen Welt berichten von der anhaltenden Abschwächung der Gesundheit von Honigbienen und anschließend von den zunehmenden Völkerverlusten seit 1990. Erst mit dem plötzlichen Auftreten der Colony Collapse Disorder (CCD) in den 2000er Jahren wurde die Sorge geweckt, diese wichtige zu verlieren mehrjähriger Bestäuber. In diesem Bericht geben wir eine Zusammenfassung der subletalen Auswirkungen von Pestiziden, insbesondere von Neonicotinoiden, auf die Gesundheit von Bestäubern aus Veröffentlichungen, die in Fachzeitschriften veröffentlicht wurden.

Aktuelle Erkenntnisse
Wir haben Peer-Review-Papiere identifiziert, die relevant sind, um die Auswirkungen subletaler Pestizidexpositionen auf die Gesundheit von Honigbienen (Apis mellifera), Hummeln (Bombus terrestris) und anderen Bienen aus einer Literaturrecherche bei PubMed und Google Scholar zu untersuchen nach kombinierten Stichwörtern von „Bestäubern“, „Honigbiene“, „Bienen“, „Pestiziden“ oder „Neonicotinoiden“ und anhand einer Querverweisprüfung eines Berichts, den das Europäische Parlament zur Vorbereitung auf die Erfüllung seines Regulierungsmandats für die EU vorgelegt hat Frage des Schutzes der Bestäuber unter ihren Mitgliedsstaaten.

Zusammenfassung
Das Beweisgewicht dieser Überprüfung zeigte deutlich die Anfälligkeit der Bienen für Insektizide, insbesondere für Neonicotinoide, und die synergistischen Wirkungen auf Krankheiten, die häufig in Bienenvölkern auftreten. Ein wichtiger Aspekt bei der Bewertung und Steuerung der Risiken, die Neonicotinoide für Bienen darstellen, sind die chronischen Auswirkungen, die durch Expositionen auf subletaler Ebene hervorgerufen werden. Mehr als 90% der nach 2009 veröffentlichten Literatur zeigten direkt oder indirekt die gesundheitsschädlichen Auswirkungen einer subletalen Exposition gegenüber Neonicotinoiden, einschließlich abnormaler Nahrungssuche, beeinträchtigter Brutentwicklung, neurologischer oder kognitiver Effekte und Koloniekollapsstörung.

Lu, C., Hung, Y. & Cheng, Q. A Review of Sub-lethal Neonicotinoid Insecticides Exposure and Effects on Pollinators. Curr Pollution Rep (2020). https://doi.org/10.1007/s40726-020-00142-8
https://link.springer.com/article/10.10 ... 20-00142-8

Literaturliste
1.
Abbott VA, Nadeau JL, Higo HA, Winston ML. Lethal and sublethal effects of imidacloprid on Osmia lignaria and cloanidin on Megachile rotundata (Hymenoptera: Megachilidae). J Econ Entomol. 2008;101(3):784–96.
2.
Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol. 2010;12(3):774–82.
3.
Australian Government. Overview report neonicotinoids and the health of honey bees in Australia 2014. archive.apvma.gov.au/news_media/docs/neonicotinoids_overview_report_february_2014.pdf. Accessed 12 May 2018.
4.
Bernal J, Garrido-Bailón E, Del Nozal MJ, González-Porto AV, Martín-Hernández R, Diego JC, et al. Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J Econ Entomol. 2010;103(6):1964–71.
5.
Biddinger DJ, Robertson JL, Mullin C, Frazier J, Ashcraft SA, Rajotte EG, et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS One. 2013;8(9):e72587.
6.
Blanchard P, Schurr F, Celle O, Cougoule N, Drajnudel P, Thiéry R, et al. First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting honeybees (Apis mellifera). J Invertebr Pathol. 2008;99:348–50.
7.
Boily M, Sarrasin B, Deblois C, Aras P, Chagnon M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environ Sci Pollut Res Int. 2013;20(8):5603–14.
8.
Bryden J, Gill RJ, Mitton RA, Raine NE, Jansen VA. Chronic sublethal stress causes bee colony failure. Ecol Lett. 2013;16:1463–9.
9.
Catae AF, Roat TC, De Oliveira RA, Ferreira Nocelli RC, Malaspina O. Cytotoxic effects of thiamethoxam in the midgut and Malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae). Microsc Res Tech. 2014;77:274–81. https://doi.org/10.1002/jemt.22339.
10.
Cepero A, Ravoet J, Gómez-Moracho T, Bernal JL, Del Nozal MJ, Bartolomé C, et al. Holistic screening of collapsing honey bee colonies in Spain: a e study. BMC Res Notes. 2014;7(1):649.

11.
Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M. A survey of pesticide residues in pollen loads collected by honey bees in France. J Econ Entomol. 2006;99(2):253–62.
12.
Christopher Cutler G, Scott-Dupree CD. A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. Ecotoxicology. 2014;23(9):1755–63.
13.
Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, et al. Metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318:283–7.
14.
Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li Y, Wheeler JG, et al. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology (Jena). 2012;115(6):365–71. https://doi.org/10.1016/j.zool.2012.05.003.
15.
Cresswell JE, Robert FX, Florance H, Smirnoff N. Clearance of ingested neonicotinoid pesticide (imidacloprid) in honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Pest Manag Sci. 2014;70(2):332–7.
16.
Cutler CG, Scott-Dupree CD, Drexler DM. Honey bees, neonicotinoids and bee incident reports: the Canadian situation. Pest Manag Sci. 2014;70(5):779–83.
17.
de Almeida RC, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch Environ Contam Toxicol. 2013;65(2):234–43.
18.
de Miranda JR, Cordoni G, Budge G. The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol. 2010;103:S30–47.
19.
Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf. 2004a;57:410–9.
20.
Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, et al. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol. 2004b;78:83–92.
21.
Derecka K, Blythe MJ, Malla S, Genereux DP, Guffanti A, Pavan P, et al. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One. 2013;8(7):e68191. https://doi.org/10.1371/journal.pone.0068191.
22.
Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF Jr, Evans JD, Chen Y. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Genet Virol. 2011;92(Pt 1):151–5.
23.
Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci U S A. 2013;110(46):18466–71.
24.
Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol. 2014. https://doi.org/10.1111/1462-2920.12426.
25.
Eiri DM, Nieh JC. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. J Exp Biol. 2012;215(Pt 12):2022–9.
26.
El Hassani AK, Dacher M, Gauthier M, Armengaud C. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav. 2005;82:30–9.
27.
El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol. 2008;54:653–61.
28.
Erickson B. Europe bans three neonicotinoids. Chem Eng News. 2013;91(18):11.
29.
Farooqui T. A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int. 2013;62(1):122–36.
30.
Feltham H, Park K, Goulson D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology. 2014;23:317–23. https://doi.org/10.1007/s10646-014-1189-7.
31.
Fischer J, Müller T, Spatz AK, Greggers U, Grünewald B, Menze R. Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One. 2014;9(3):e91364. https://doi.org/10.1371/journal.pone.0091364.
32.
Gels JA, Held DW, Potter DA. Hazards of insecticides to the bumble bees Bombus impatiens (Hymenoptera: Apidae) foraging on flowering white clover in turf. J Econ Entomol. 2002;95(4):722–8.
33.
Gill RJ, Raine NE. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct Ecol. 2014;28:1459–71. https://doi.org/10.1111/1365-2435.12292.
34.
Gill RJ, Ramos-Rodriguez O, Raine NE. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature. 2012;491(7422):105–8. https://doi.org/10.1038/nature11585.
35.
Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Di Bernardo A, et al. Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol. 2009;102(5):1808–15.
36.
Grimm M, Sedy K, Süβnbacher E, Riss A. Existing scientific evidence of the effects of neonicotinoid pesticides on bees. 2012. http://www.europarl.europa.eu/RegData/e ... VI_NT(2012)492465_EN.pdf. Accessed 11 Nov 2013.
37.
Henry M, Rollin O, Aptel J, Tchamitchian S, Beguin M, Requier F, et al. A common pesticide decreases foraging success and survival in honey bees. Science. 2012;336(6079):348–50. https://doi.org/10.1126/science.1215039.
38.
Higes M, Martín-Hernández R, Botías C, Bailón EG, González-Porto AV, Barrios L, et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol. 2008;10:2659–69.
39.
Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One. 2012;7(1):e29268. https://doi.org/10.1371/journal.pone.0029268.
40.
Larson JL, Redmond CT, Potter DA. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS One. 2013;8(6):e66375.
41.
Laycock I, Cresswell JE. Repression and recuperation of brood production in Bombus terrestris bumble bees exposed to a pulse of the neonicotinoid pesticide imidacloprid. PLoS One. 2013;8(11):e79872. https://doi.org/10.1371/journal.pone.0079872.
42.
Laycock I, Cotterell KC, O’Shea-Wheller TA, Cresswell JE. Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotoxicol Environ Saf. 2014;100:153–8.
43.
Lu C, Warchol KM, Callahan RA. In situ replication of honey bee colony collapse disorder. Bull Insectol. 2012;65(1):99–106.
44.
Lu C, Warchol KM, Callahan RA. Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull Insectol. 2014;67(1):125–30.
45.
Maini S, Medrzycki P, Porrini C. The puzzle of honey bee losses: a brief review. Bull Insectol. 2010;63(1):153–60.
46.
Mayes MA, Thompson GD, Husband B, Miles MM. Spinosad toxicity to pollinators and associated risk. Rev Environ Contam Toxicol. 2003;179:37–71.
47.
Medrzycki P, Sgolastra F, Bortolotti L, Bogo G, Tosi S, Padovani E, et al. Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides. J Apic Res. 2010;49:52–9.
48.
Morandin LA, Winston ML, Franklin MT, Abbott VA. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson). Pest Manag Sci. 2005;61(7):619–26.
49.
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, et al. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One. 2010;5(3):e9754.

50.
Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, Connolly CN. Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun. 2013;4:1634. https://doi.org/10.1038/ncomms2648.
51.
Pareja L, Colazzo M, Perez-Parada A, Niell S, Carrasco-Letelier L, Bseil N, et al. Detection of pesticides in active and depopulated beehives in Uruguay. Int J Environ Res Public Health. 2011;8:3844–58. https://doi.org/10.3390/ijerph8103844.
52.
Pettis JS, vanEngelsdorp D, Johnson J, Dively G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften. 2012;99(2):153–8.
53.
Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, Vanengelsdorp D. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One. 2013;8(7):e70182.
54.
Pilling E, Campbell P, Coulson M, Ruddle N, Tornier I. A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS One. 2013;8(10):e77193.
55.
Rondeau G, Sánchez-Bayo F, Tennekes HA, Decourtye A, Ramírez-Romero R, Desneux N. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci Rep. 2014;4:5566.
56.
Rossi Cde A, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O. Effects of sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera (Hymenoptera, Apidae). Microsc Res Tech. 2013;76(5):552–8. https://doi.org/10.1002/jemt.22199.
57.
Sandrock C, Tanadini LG, Pettis JS, Biesmeijer JC, Potts SG, Neumann P. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric Forest Entomol. 2014a;16:119–28.
58.
Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS One. 2014b;9(8):e103592.
59.
Schneider CW, Tautz J, Grünewald B, Fuchs S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One. 2012;7(1):e30023.
60.
Scholer J, Krischik V. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens. PLoS One. 2014;9(3):e91573.
61.
Scott-Dupree CD, Conroy L, Harris CR. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol. 2009;102(1):177–82.

62.
Smagghe G, Deknopper J, Meeus I, Mommaerts V. Dietary chlorantraniliprole suppresses reproduction in worker bumblebees. Pest Manag Sci. 2013;69(7):787–91.
63.
Takashi M. Reduction in homing flights in the honey bee Apis mellifera after a sublethal dose of neonicotinoid insecticides. Bull Insectol. 2013;66(1):1–9.
64.
Tan K, Chen W, Dong S, Liu X, Wang Y, Nieh JC. Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS One. 2014;9(7):e102725.
65.
Teeters BS, Johnson RM, Ellis MD, Siegfried BD. Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ Toxicol Chem. 2012;31(6):1349–54.
66.
Thompson HM, Fryday SL, Harkin S, Milner S. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie. 2014;45:545–53.
67.
Tomé HV, Martins GF, Lima MA, Campos LA, Guedes RN. Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One. 2012;7(6):e38406.
68.
U.S. Department of Agriculture: Washington, DC. Report on the National Stakeholders Conference on Honey Bee Health 2013. http://www.usda.gov/documents/ReportHoneyBeeHealth.pdf. Accessed 12 May 2018.
69.
United Nations News Center report. Humans must change behaviour to save bees. 2011. http://www.un.org/apps/news/story.asp?N ... F0_9_nF_T8. Accessed 5 May 2018.
70.
US EPA-OPP. Reregistration eligibility decision for tau-fluvalinate. 2005. http://www.epa.gov/pesticides/reregistr ... te_red.pdf. Accessed 5 May 2018.
71.
vanEngelsdorp D, Underwood RM, Caron D, Hayes J Jr. An estimate of managed colony losses in the winter of 2006-2007: a report commission by the Apiary Inspectors of America. Am Bee J. 2007;147:599–603.
72.
vanEngelsdorp D, Hayes J Jr, Underwood RM, Pettis J. A survey of honey bee colony losses in the U. S. Fall 2007 to Spring 2008. PLoS One. 2008;3(12):e4071. https://doi.org/10.1371/journal.pone.0004071.
73.
vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, et al. Colony collapse disorder: a descriptive study. PLoS One. 2009;4(8):e6481. https://doi.org/10.1371/journal.pone.0006481.
74.
Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, et al. Exposure to sub-lethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One. 2011;6(6):e21550. https://doi.org/10.1371/journal.pone.0021550.
75.
Whitehorn PR, O’Connor S, Goulson D, Wackers FL. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 2012;336(6079):351–2. https://doi.org/10.1126/science.1215025.
76.
Williams GR, Tarpy DR, vanEngelsdorp D, Chauzat MP, Cox-Foster DL, Delaplane KS, et al. Colony collapse disorder in context. Bioessays. 2010;32:845–6.
77.
Williamson SM, Wright GA. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J Exp Biol. 2013;216(Pt 10):1799–807.
78.
Williamson SM, Baker DD, Wright GA. Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera. Invertebr Neurosci. 2013;13(1):63–70.
79.
Williamson SM, Willis SJ, Wright GA. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology. 2014;23(8):1409–18.
80.
Wu JY, Anelli CM, Sheppard WS. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One. 2011;6(2):e14720.
81.
Wu JY, Smart MD, Anelli CM, Sheppard WS. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol. 2012;109(3):326–9.
82.
Yang EC, Chuang YC, Chen YL, Chang LH. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol. 2008;101(6):1743–8.
Cogito ergo summ.
Ich summe, also bien ich.

Benutzeravatar
zaunreiter
Administrator
Beiträge: 4818
Registriert: Do 5. Aug 2010, 19:14
Wohnort: Niederrhein
Kontaktdaten:

Re: Varroa außer Kontrolle - was Pestizide damit zu tun haben

Beitragvon zaunreiter » So 12. Apr 2020, 00:13

Giftschäden an Bienenvölkern
Eva Hauck, Karlheinz Küche, Karl Stute, Oscar Wahl
Ehrenwirth Verlag, München, 1979
ISBN: 3-431-02209-X

Zitat:
Giftschäden haben die unliebsame Neigung, sich zu wiederholen – dagegen muss der Imker etwas tun.

Giftschäden erkennen, Bienenproben nehmen, etc.
Anschaulich anhand von Beispielen.
Dateianhänge
Giftschaden-Bienenvolker.pdf
(7.53 MiB) 32-mal heruntergeladen
Cogito ergo summ.
Ich summe, also bien ich.

Rolf
Beiträge: 129
Registriert: Di 20. Dez 2016, 13:56

Re: Varroa außer Kontrolle - was Pestizide damit zu tun haben

Beitragvon Rolf » So 12. Apr 2020, 10:35

Vielen Dank Bernhard!

Rolf
[b]Mitglied im Bundesverband Dunkle Biene e.V.[/b] http://www.bv-dunkle-biene.de/
Eine Mitgliedschaft in unserem Verein ist ein guter Beitrag zum Erhalt unserer einheimischen Dunklen Biene.

Benutzeravatar
zaunreiter
Administrator
Beiträge: 4818
Registriert: Do 5. Aug 2010, 19:14
Wohnort: Niederrhein
Kontaktdaten:

Re: Varroa außer Kontrolle - was Pestizide damit zu tun haben

Beitragvon zaunreiter » Di 26. Mai 2020, 19:34

Pestizid-Virus-Wechselwirkungen bei Honigbienen: Herausforderungen und Chancen für das Verständnis der Treiber von Bienenrückgängen

Abstrakt

Honigbienen sind wichtige landwirtschaftliche Bestäuber, aber Imker erleiden aufgrund einer Reihe von Umweltstressoren, einschließlich unzureichender Ernährung, Druck durch Parasiten und Krankheitserreger und Exposition gegenüber einer Vielzahl von Pestiziden, kontinuierlich hohe jährliche Kolonieverluste. In diesem Aufsatz untersuchen wir, wie zwei solcher Stressfaktoren, Pestizide und Viren, auf additive oder synergistische Weise interagieren können, um die Gesundheit von Honigbienen zu beeinflussen. Trotz eines scheinbar einfachen Vergleichs gibt es einen Mangel an Studien, die dieses Problem untersuchen, wahrscheinlich aufgrund der Komplexität solcher Wechselwirkungen. Zu diesen Komplexitäten gehören die Vielzahl chemischer Pestizidklassen mit unterschiedlichen Wirkmechanismen, die Kopplung vieler Bienenviren mit ektoparasitären Varroa-Milben und die komplizierte soziale Struktur von Honigbienenvölkern. Zusammen stellen diese Probleme eine Herausforderung für Forscher dar, die die Auswirkungen von Pestizid-Virus-Wechselwirkungen sowohl auf individueller als auch auf Kolonieebene untersuchen.

[...]

(B) Pestizidexposition kann viele Komponenten und Wege des Immunsystems negativ beeinflussen. Phagozytose: Die Pro-Hämozyten-Differenzierung kann beeinträchtigt werden, was zu weniger phagozytierenden Immunzellen führt. Der Prozess der Phagozytose selbst kann ebenfalls beeinflusst werden; Autophagie: Die Regulation der Autophagie kann gestört sein und möglicherweise zur Apoptose in Zellen führen. Rezeptoraktivität: Einige Insektizide zielen auf Rezeptoren ab, die auch an der antiviralen Abwehr beteiligt sind. Genexpression: Pestizide können die Expression von Immun- und Entgiftungsgenen verändern. Dies schließt hochregulierende Inhibitoren des wichtigen Transkriptionsfaktors des Immunsystems, NF-κB, ein; Hitzeschockproteine: Einige Pestizide regulieren die Expression von Genen, die für Hitzeschockproteine kodieren, herunter. Diese Proteine können die Viruslast reduzieren und haben auch Funktionen im antiviralen RNAi-Weg; Darmbakterien: Pestizide können auch mikrobielle Gemeinschaften im Darm stören, von denen bekannt ist, dass sie eine Rolle für die Gesundheit und Immunität von Honigbienen spielen.

Harwood, G.P.; Dolezal, A.G. Pesticide–Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020, 12, 566. https://doi.org/10.3390/v12050566
Cogito ergo summ.
Ich summe, also bien ich.

Benutzeravatar
zaunreiter
Administrator
Beiträge: 4818
Registriert: Do 5. Aug 2010, 19:14
Wohnort: Niederrhein
Kontaktdaten:

Re: Varroa außer Kontrolle - was Pestizide damit zu tun haben

Beitragvon zaunreiter » Di 26. Mai 2020, 19:45

Poster:

Auswirkungen eines Neonicotinoid-Insektizids auf das Wachstum von Honigbienen-Darmmikroben

https://dc.ewu.edu/cgi/viewcontent.cgi? ... 20_posters
Dateianhänge
Plakat-Imidacloprid-Mikroben.pdf
(988.54 KiB) 8-mal heruntergeladen
Cogito ergo summ.
Ich summe, also bien ich.

Benutzeravatar
zaunreiter
Administrator
Beiträge: 4818
Registriert: Do 5. Aug 2010, 19:14
Wohnort: Niederrhein
Kontaktdaten:

Re: Varroa außer Kontrolle - was Pestizide damit zu tun haben

Beitragvon zaunreiter » Di 26. Mai 2020, 22:00

Langzeit-Videoaufnahmen innerhalb des Bienenstocks erkennen ein verändertes Fütterungs-erhalten und eine verzögerte Larvenentwicklung von mit Neonicotinoid behandelten Honigbienen

Abstrakt
Risikobewertungen für Agrarchemikalien sind erforderlich, um gesunde Populationen von Honigbienenvölkern zu erhalten. Feldstudien an ganzen Völkern sind in der Verhaltensforschung begrenzt, während Ergebnisse von Laborstudien nur eingeschränkte Schlussfolgerungen über die Auswirkungen ganzer Völkern zulassen. Bisher fehlten Methoden zur automatisierten Langzeituntersuchung des Verhaltens in Waben wie der Brutpflege.

In der vorliegenden Studie zeigen wir eine innovative Videomethode, die eine zellinterne Analyse in Bienenstöcken zur Beobachtung von Honigbienen (Apis mellifera) ermöglicht, um chronische subletale Neonicotinoid-Effekte von Clothianidin (1 und 10 ppb) und Thiacloprid (200 ppb) auf das Verhalten und Entwicklung der Arbeiter zu erkennen .

Im Mai und Juni zeigten Völker, denen über drei Wochen 10 ppb Clothianidin und 200 ppb Thiacloprid in Sirup verabreicht wurden, während verschiedener Larvenentwicklungstage (LDDs) verringerte Fütterungsbesuche und -dauer. Am LDD 6 (Capping Day) unterschied sich die Gesamtfütterungsdauer zwischen den Behandlungen nicht.

Die Verhaltensanpassung wurde von Ammenbienen in den Behandlungsgruppen als Reaktion auf eine verzögerte Larvenentwicklung durch Verlängerung der gesamten Fütterungszeit gezeigt. Mithilfe unseres Algorithmus für maschinelles Lernen demonstrieren wir eine neuartige Methode zur Erkennung von Verhaltensweisen in einem intakten Bienenstock, die auf vielseitige Weise zur Durchführung von Wirkungsanalysen von Chemikalien, Schädlingen und anderen Stressfaktoren eingesetzt werden kann.

Siefert, P., Hota, R., Ramesh, V. et al. Chronic within-hive video recordings detect altered nursing behaviour and retarded larval development of neonicotinoid treated honey bees. Sci Rep 10, 8727 (2020). https://doi.org/10.1038/s41598-020-65425-y
Cogito ergo summ.
Ich summe, also bien ich.


Zurück zu „Sonstiges“